20 research outputs found

    An Overview of Fully Integrated Switching Power Converters Based on Switched-Capacitor versus Inductive Approach and Their Advanced Control Aspects

    Get PDF
    This paper reviews and discusses the state of the art of integrated switched-capacitor and integrated inductive power converters and provides a perspective on progress towards the realization of efficient and fully integrated DC–DC power conversion. A comparative assessment has been presented to review the salient features in the utilization of transistor technology between the switched-capacitor and switched inductor converter-based approaches. First, applications that drive the need for integrated switching power converters are introduced, and further implementation issues to be addressed also are discussed. Second, different control and modulation strategies applied to integrated switched-capacitor (voltage conversion ratio control, duty cycle control, switching frequency modulation, Ron modulation, and series low drop out) and inductive converters (pulse width modulation and pulse frequency modulation) are then discussed. Finally, a complete set of integrated power converters are related in terms of their conditions and operation metrics, thereby allowing a categorization to provide the suitability of converter technologies

    Solar-Based DG Allocation Using Harris Hawks Optimization While Considering Practical Aspects

    Get PDF
    The restructuring of power systems and the ever-increasing demand for electricity have given rise to congestion in power networks. The use of distributed generators (DGs) may play a significant role in tackling such issues. DGs may be integrated with electrical power networks to regulate the drift of power in the transmission lines, thereby increasing the power transfer capabilities of lines and improving the overall performance of electrical networks. In this article, an effective method based on the Harris hawks optimization (HHO) algorithm is used to select the optimum capacity, number, and site of solar-based DGs to reduce real power losses and voltage deviation. The proposed HHO has been tested with a complex benchmark function then applied to the IEEE 33 and IEEE 69 bus radial distribution systems. The single and multiple solar-based DGs are optimized for the optimum size and site with a unity power factor. It is observed that the overall performance of the systems is enhanced when additional DGs are installed. Moreover, considering the stochastic and sporadic nature of solar irradiance, the practical size of DG has been suggested based on analysis that may be adopted while designing the actual photovoltaic (PV) plant for usage. The obtained simulation outcomes are compared with the latest state-of-the-art literature and suggest that the proposed HHO is capable of processing complex high dimensional benchmark functions and has capability to handle problems pertaining to electrical distribution in an effective manner.publishedVersio

    Renewable Energy Powered Plugged-In Hybrid Vehicle Charging System for Sustainable Transportation

    Get PDF
    Energy transformation by power electronic converters is not feasible without the efficient use of renewable energy. The article tries to extend the use of renewable energy to PHEV battery charging. In PHEV, the battery is one of the major sources of stored energy. The converter used for charging these batteries is of crucial concern. The paper addresses various challenges in designing a DC to DC converter for battery charging in DC bus. An optimized converter is designed to work with renewable energy sources to accomplish a high boost ratio, low input current ripple, low output voltage ripple, high power efficiency, and high power density. A combination of two interleaved boost converters is effectively used with the overlap time switching to achieve a high voltage boost ratio in forming the DC bus. Transformer isolation is used to increase reliability and boost ratio further. The secondary side employs a series-connected voltage doubler. The converter boosts an input voltage of 24 V to a range of 300–400 V. Simulation results have been obtained for a 300 W system. Simulation results are validated by a prototype implementation for a 250 W system. The converter is studied and analyzed for steady-state and transient state characteristics and the power efficiency obtained is 92.9%

    Impedance-Source DC-to-AC/DC Converter

    No full text
    This article presents a novel impedance-source-based direct current (DC)-to-alternating current (AC)/DC converter (Z-Source DAD Converter). The Z-Source DAD converter converts the input DC voltage into AC or DC with buck or boost in the load voltage. This Z-Source DAD conversion circuit is a single-stage power conversion system. This converter circuit converts the input DC voltage into variable-magnitude output DC voltage or converts the DC voltage into a variable-magnitude output AC voltage. The higher voltage magnitude in boost mode can be controlled by controlling the shoot-through (ST) state timing of the converter. MATLAB-Simulink simulation and microcontroller-based hardware circuit results are presented to demonstrate power conversion with the buck and boost features of the Z-Source DAD converter for both types of output voltages. The simulation and experimental results show that the Z-Source DAD converter converts the given DC supply into AC or DC with buck or boost in the output load voltage

    Real Time Hardware-in-Loop Implementation of LLC Resonant Converter at Worst Operating Point Based on Time Domain Analysis

    No full text
    The inductor inductor capacitor (LLC) resonant topology has become more popular for deployment in high power density and high-efficiency power converter applications due to its ability to maintain zero voltage switching (ZVS) over a wider input voltage range. Due to their ease of operation and acceptable accuracy, frequency domain-related analytical methods using fundamental harmonic approximation (FHA) have been frequently utilized for resonant converters. However, when the switching frequency is far from the resonant frequency, the circuit currents contain a large number of harmonics, which cannot be ignored. Therefore, the FHA is incapable of guiding the design when the LLC converter is used to operate in a wide input voltage range applications due to its inaccuracy. As a result, a precise LLC converter model is needed. Time domain analysis is a precise analytical approach for obtaining converter attributes, which supports in the optimal sizing of LLC converters. This work strives to give a precise and an approximation-free time domain analysis for the exact modeling of high-frequency resonant converters. A complete mathematical analysis for an LLC resonant converter operating in discontinuous conduction mode (DCM)—i.e., the boost mode of operation below resonance—is presented in this paper. The proposed technique can confirm that the converter operates in PO mode throughout its working range; in addition, for primary MOSFET switches, it guarantees the ZVS and zero current switching (ZCS) for the secondary rectifier. As a function of frequency, load, and other circuit parameters, closed-form solutions are developed for the converter’s tank root mean square (RMS) current, peak stress, tank capacitor voltage, voltage gain, and zero voltage switching angle. Finally, an 8 KW LLC resonant converter is built in the hardware-in-loop (HIL) testing method on RT-LAB OP-5700 to endorse the theoretical study

    Real Time Hardware-in-Loop Implementation of LLC Resonant Converter at Worst Operating Point Based on Time Domain Analysis

    No full text
    The inductor inductor capacitor (LLC) resonant topology has become more popular for deployment in high power density and high-efficiency power converter applications due to its ability to maintain zero voltage switching (ZVS) over a wider input voltage range. Due to their ease of operation and acceptable accuracy, frequency domain-related analytical methods using fundamental harmonic approximation (FHA) have been frequently utilized for resonant converters. However, when the switching frequency is far from the resonant frequency, the circuit currents contain a large number of harmonics, which cannot be ignored. Therefore, the FHA is incapable of guiding the design when the LLC converter is used to operate in a wide input voltage range applications due to its inaccuracy. As a result, a precise LLC converter model is needed. Time domain analysis is a precise analytical approach for obtaining converter attributes, which supports in the optimal sizing of LLC converters. This work strives to give a precise and an approximation-free time domain analysis for the exact modeling of high-frequency resonant converters. A complete mathematical analysis for an LLC resonant converter operating in discontinuous conduction mode (DCM)—i.e., the boost mode of operation below resonance—is presented in this paper. The proposed technique can confirm that the converter operates in PO mode throughout its working range; in addition, for primary MOSFET switches, it guarantees the ZVS and zero current switching (ZCS) for the secondary rectifier. As a function of frequency, load, and other circuit parameters, closed-form solutions are developed for the converter’s tank root mean square (RMS) current, peak stress, tank capacitor voltage, voltage gain, and zero voltage switching angle. Finally, an 8 KW LLC resonant converter is built in the hardware-in-loop (HIL) testing method on RT-LAB OP-5700 to endorse the theoretical study

    Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions

    No full text
    The transportation sector plays a prominent role in driving the economy of any given nation. However, with the recent tensions arising in and around the transportation sector, sustainable mobility concepts have evolved. However, it is quite unclear whether sustainable mobility is feasible and exhibits economic returns, environmental benefits, and societal advantages. Hence, taking into account the environmental, economic, and social impact, and technical possibilities, this study intends to analyse sustainable mobility in relation to economic returns, environmental benefits and societal advantages using bibliometric analysis. For this study, we considered two decades of research, from 2001 to 2021. An in-depth search was performed on articles generated in the last two decades to assess the state of the literature on sustainable mobility. The most reverent, frequently referenced papers and influential journals in the field of sustainable mobility were identified. The acquired findings highlight the most prominent publications, journals, and authors who have made significant contributions to sustainable mobility studies, as well as the sub-areas or themes linked to sustainable mobility. Overall, the analysis discovered current paradigms, significant research topics, and a relationship between the domains of sustainable mobility studies. Meanwhile, this study also demonstrates advancements in the primary themes and sub-areas during the previous 20 years and alterations in future research fields. In addition, this study identified the promotion of rapid-reliable-safe-convenient (RRSC) transportation services, reduction in urban car traffic, and support to low transportation demand as the critical steps that require immediate attention in order to build a sustainable mobility future. We also observed that hydrogen would be a promising fuel and potential technology for the future mobility sector in the post-COVID era

    Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions

    No full text
    The transportation sector plays a prominent role in driving the economy of any given nation. However, with the recent tensions arising in and around the transportation sector, sustainable mobility concepts have evolved. However, it is quite unclear whether sustainable mobility is feasible and exhibits economic returns, environmental benefits, and societal advantages. Hence, taking into account the environmental, economic, and social impact, and technical possibilities, this study intends to analyse sustainable mobility in relation to economic returns, environmental benefits and societal advantages using bibliometric analysis. For this study, we considered two decades of research, from 2001 to 2021. An in-depth search was performed on articles generated in the last two decades to assess the state of the literature on sustainable mobility. The most reverent, frequently referenced papers and influential journals in the field of sustainable mobility were identified. The acquired findings highlight the most prominent publications, journals, and authors who have made significant contributions to sustainable mobility studies, as well as the sub-areas or themes linked to sustainable mobility. Overall, the analysis discovered current paradigms, significant research topics, and a relationship between the domains of sustainable mobility studies. Meanwhile, this study also demonstrates advancements in the primary themes and sub-areas during the previous 20 years and alterations in future research fields. In addition, this study identified the promotion of rapid-reliable-safe-convenient (RRSC) transportation services, reduction in urban car traffic, and support to low transportation demand as the critical steps that require immediate attention in order to build a sustainable mobility future. We also observed that hydrogen would be a promising fuel and potential technology for the future mobility sector in the post-COVID era

    A Comprehensive Review of Path Planning for Agricultural Ground Robots

    No full text
    The population of the world is predicted to reach nine billion by 2050, implying that agricultural output must continue to rise. To deal with population expansion, agricultural chores must be mechanized and automated. Over the last decade, ground robots have been developed for a variety of agricultural applications, with autonomous and safe navigation being one of the most difficult hurdles in this development. When a mobile platform moves autonomously, it must perform a variety of tasks, including localization, route planning, motion control, and mapping, which is a critical stage in autonomous operations. This research examines several agricultural applications as well as the path planning approach used. The purpose of this study is to investigate the current literature on path/trajectory planning aspects of ground robots in agriculture using a systematic literature review technique, to contribute to the goal of contributing new information in the field. Coverage route planning appears to be less advanced in agriculture than point-to-point path routing, according to the finding, which is due to the fact that covering activities are usually required for agricultural applications, but precision agriculture necessitates point-to-point navigation. In the recent era, precision agriculture is getting more attention. The conclusion presented here demonstrates that both field coverage and point-to-point navigation have been applied successfully in path planning for agricultural robots
    corecore